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Let X be a real separable Banach space and K be a compact subset; C(K)
denotes the family of continuous functions from K into X together with the
uniform norm topology

II! - g [I = max Ilf(x) - g(x)ll.
xEK

In some recent papers [3,4], Prenter has proved that if X is a Hilbert
space or a separable Banach space with "Property M" then the Weierstrass
theorem holds in C(K). It is the purpose of the present note to give a general
theorem without any restriction on X. Our method is entirely different from
Prenter's.

I. PRELIMINARIES

Let X be a Banach space and k )0 I. Xk denotes the Banach space

Xx ... X X
k times

DEFINITION 1.1. A k-linear operator T on X is a function on Xk into X
which is linear in each of its arguments separately.

A O-linear operator Lo on X is a constant function on X into X and we
shall identify a O-linear operator L o with its range.

The norm of a k-linear operator T is the number

II Til = sup II T(xI , ••• , xk)11/11 Xl III1 x 2 11 "'11 Xk II.
If T is a k-linear operator and S is a q-linear operator then we can define

in a natural way the products TS and ST which are obviously (k + q)
linear operators. By a polynomial we mean any function of the form

Pn(x) = Lox + ... + Lnxn,
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where L, are i-linear operators. The number n is called the degree, n =

deg Pn •

Some explanation of notation is in order. For any k :;:;; 1 and T a k-linear
operator on X we note

T(x, x,..., x) = Tx/.;.

It is obvious that the set of polynomials forms an algebra (generally non
commutative) with properties:

1. deg(Pn + Pm) < max{deg P n , deg Pm},

2. deg(Pn ' Pm) ~ n + m.

For details see any book offunctional analysis.

2

We consider now a Banach space X; we let K be a compact subset in X
and introduce

(1) C(K, X) = {f,f: K -- X continuously},

(2) P(K, X) = {p, p is a continuous polynomial},

and if Y C R (the reals)

(3) C(K, Y) = {f,f: K -+ Y continuously},

(4) P(K, Y) = {f,fis a continuous polynomial from Kto Y}. Since all
spaces in (1)-(3) are clearly defined, we give some details for (4). By real
polynomial we mean any function of the form

where ao is a real constant and

a,: X X ... X X -+ Y
i times

(Y the reals),

with a,(x, ... , x) = aixi. It is clear that PC/(. Y) forms an algebra. Our first
basic result gives a relation between C(K, Y) and P(K, Y).

THEOREM 2.1. The algebra P(K, R) is dense in the uniform norm topology
in C(K, R).

Proof Our proof depends upon a basic idea used by de Branges [1]. This
consists of remarking that the support of some measures has special proper-
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ties with respect to some subspaces and using this for commutative sub
algebras of the algebra of all continuous functions on a compact Hausdorff
space.

We need the following notion.

DEFINITION 2.1. A level set for a family of functions S C C(K, R) is a
subset Ko C K such that SjKo contains only constant functions. It is obvious
that any point of K is a level set, and using Zorn's lemma we see that any
point is contained in a maximal level set; the same is true for any level set.

LEMMA 2.2. Let F be a continuous linear functional on C(K, R) such that

(1) F is an extreme point of the set ofall linear functionals ,\ on C(K, R)
such that II ,\ II ~ 1 and,\ annihilates P(K, R),

(2) (-t is the measure determining F so that F(f) = fK f(s) d(-t(s). Then
the support of(-t, sup (-t, is a level set of P(K, R).

Proof Suppose that is not so. We find an element of P(K, R), say go ,
such that it is not constant on sup (-t (which is equal to sup II (-t II , II (-t II the
total variation of (-t). We may suppose without loss of generality that

We can consider also the following measures

it is easy to see that

and thus

have the property

which represents a contradiction, since (-t is a measure representing an extreme
point. The lemma is proved.

Remark. The lemma is valid also for the closure of P(K, R), P(K, R) and
the proof is the same.

The proof of Theorem 2.1 is now very simple. Indeed the Hahn-Banach
theorem implies that any level set of P(K, R) contains only one point. By the
Krein-Milman and Hahn-Banach theorems combined with the Riesz
Kakutani representation theorem there exists a nonzero functional annihila-
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ting P(K, R), and it is an extreme point. By the lemma, the support of the
corresponding measure reduces to a point, and then our functional is of the
form

for some to EO K, which is an impossibility since no f EO P(K, R) vanishes at to •
This completes the proof of the theorem.

DEFINITION 2.3. A functionf: K ---+ R is called normal if it is continuous
andf(x) E [0,1].

The following is well known [2].

THEOREM 2.4. For any covering VI'"'' Vm , with open sets, of K, there
exist normal functions hI"'" hm such that

(1) h,(t) = °in the exterior of V, ,

(2) 2:.'::1 h,(t) = 1.

We can prove the Weierstrass theorem.

THEOREM 2.5. The space P(K, X) is dense in C(K, X)*.

Proof LetfEO C(K, X) and E > O. For each tEO K, let

Vt = (s, llf(t) - f(s)11 < €},

which is open. Thus {Vt} is an open covering of K and there exists a finite
covering of K, say, Vt , ... , Vt . From Theorem 2.4 we find the normal

1 m

functions hI"'" hm and we can construct the function

m

F*(t) = '2..J(ti ) h,(t).
I

It is easy to see that

Ilf(t) - F*(t)11 < E,

and, since each hi can be approximated by elements of P(K, R), we find easily
thatfcan be approximated by elements of P(K, X).

In a paper which is now in preparation we extend these constructions to

complex Banach spaces proving in full generality a Weierstrass theorem.
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